Gleitende durchschnittliche Vorhersage Einführung. Wie Sie vielleicht vermuten, sehen wir uns einige der primitivsten Ansätze zur Prognose an. Aber hoffentlich sind dies zumindest eine lohnende Einführung in einige der Computing-Fragen im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir fortfahren, indem wir am Anfang beginnen und mit Moving Average Prognosen arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist mit gleitenden durchschnittlichen Prognosen vertraut, unabhängig davon, ob sie glauben, dass sie sind. Alle College-Studenten machen sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, wo Sie vier Tests während des Semesters haben werden. Nehmen wir an, Sie haben eine 85 bei Ihrem ersten Test. Was würdest du für deinen zweiten Test-Score vorhersagen Was denkst du, dein Lehrer würde für deinen nächsten Test-Score voraussagen Was denkst du, deine Freunde können für deinen nächsten Test-Score voraussagen Was denkst du, deine Eltern können für deinen nächsten Test-Score voraussagen All das Blabbing, das du mit deinen Freunden und Eltern machen kannst, sie und deinem Lehrer sind sehr wahrscheinlich zu erwarten, dass du etwas im Bereich der 85 bekommst, die du gerade bekommen hast. Nun, jetzt können wir davon ausgehen, dass trotz Ihrer Selbst-Förderung zu Ihren Freunden, Sie über-schätzen Sie sich selbst und Figur können Sie weniger für den zweiten Test zu studieren und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmert zu gehen Erwarten Sie auf Ihrem dritten Test zu bekommen Es gibt zwei sehr wahrscheinlich Ansätze für sie eine Schätzung zu entwickeln, unabhängig davon, ob sie es mit Ihnen teilen wird. Sie können sich selbst sagen, "dieser Kerl ist immer bläst Rauch über seine smarts. Er wird noch 73, wenn er glücklich ist. Vielleicht werden die Eltern versuchen, mehr unterstützend zu sein und zu sagen, quotWell, so weit hast du eine 85 und eine 73 bekommen, also vielleicht solltest du auf eine (85 73) 2 79 kommen. Ich weiß nicht, vielleicht, wenn du weniger feiern musst Und werent wedelte den Wiesel überall auf den Platz und wenn du anfing, viel mehr zu studieren, könntest du eine höhere Punktzahl bekommen. Diese beiden Schätzungen belegen tatsächlich durchschnittliche Prognosen. Die erste nutzt nur Ihre aktuellste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als eine gleitende durchschnittliche Prognose mit einer Periode von Daten bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass all diese Leute, die auf deinem großen Verstand zerschlagen sind, dich irgendwie verärgert haben und du entscheidest, den dritten Test aus deinen eigenen Gründen gut zu machen und eine höhere Punktzahl vor deinem Quoten zu setzen. Sie nehmen den Test und Ihre Partitur ist eigentlich ein 89 Jeder, auch Sie selbst, ist beeindruckt. So, jetzt haben Sie die endgültige Prüfung des Semesters kommen und wie üblich fühlen Sie sich die Notwendigkeit, goad jeder in die Herstellung ihrer Vorhersagen darüber, wie youll auf den letzten Test zu tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich kannst du das Muster sehen. Was glaubst du, ist die genaueste Pfeife während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von deiner entfremdeten Halbschwester namens Whistle während wir arbeiten. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst stellen wir die Daten für eine dreistellige gleitende durchschnittliche Prognose vor. Der Eintrag für Zelle C6 sollte jetzt sein. Du kannst diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie sich der Durchschnitt über die aktuellsten historischen Daten bewegt, aber genau die drei letzten Perioden verwendet, die für jede Vorhersage verfügbar sind. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngsten Vorhersage zu entwickeln. Dies unterscheidet sich definitiv von dem exponentiellen Glättungsmodell. Ive enthalten die quotpast Vorhersagen, weil wir sie in der nächsten Webseite verwenden, um die Vorhersagegültigkeit zu messen. Jetzt möchte ich die analogen Ergebnisse für eine zweistufige gleitende durchschnittliche Prognose vorstellen. Der Eintrag für Zelle C5 sollte jetzt sein. Du kannst diese Zellformel in die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast-Vorhersagen für illustrative Zwecke und für die spätere Verwendung in der Prognose-Validierung enthalten. Einige andere Dinge, die wichtig sind, um zu bemerken. Für eine m-Periode gleitende durchschnittliche Prognose werden nur die m aktuellsten Datenwerte verwendet, um die Vorhersage zu machen. Nichts anderes ist nötig Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie quotpast Vorhersagen quot, bemerken, dass die erste Vorhersage in Periode m 1 auftritt. Beide Themen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der beweglichen Mittelfunktion. Jetzt müssen wir den Code für die gleitende Mittelprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden gelten, die Sie in der Prognose und dem Array von historischen Werten verwenden möchten. Sie können es in der beliebigen Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) Als Single Declaring und Initialisierung von Variablen Dim Item als Variant Dim Zähler als Integer Dim Akkumulation als Single Dim HistoricalSize als Integer Initialisierung von Variablen Counter 1 Akkumulation 0 Bestimmen der Größe von Historical Array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulation der entsprechenden Anzahl der aktuellsten bisher beobachteten Werte Akkumulation Akkumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie wollen die Funktion auf der Kalkulationstabelle positionieren, so dass das Ergebnis der Berechnung erscheint, wo es folgendes aussieht. In der Praxis wird der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihen liefern, wenn der Mittelwert konstant oder langsam verändert wird. Im Falle eines konstanten Mittels wird der größte Wert von m die besten Schätzungen des zugrunde liegenden Mittels geben. Eine längere Beobachtungsperiode wird die Effekte der Variabilität ausgleichen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung des zugrunde liegenden Prozesses zu reagieren. Zur Veranschaulichung schlagen wir einen Datensatz vor, der Änderungen des zugrunde liegenden Mittels der Zeitreihen beinhaltet. Die Figur zeigt die Zeitreihen, die für die Illustration verwendet wurden, zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als Konstante bei 10. Beginnend um die Zeit 21 erhöht er sich in jeder Periode um eine Einheit, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden durch Addition des Mittelwertes, eines zufälligen Rauschens aus einer Normalverteilung mit Nullmittelwert und Standardabweichung simuliert. 3. Die Ergebnisse der Simulation werden auf die nächste ganze Zahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir den Tisch benutzen, müssen wir uns daran erinnern, dass zu irgendeiner Zeit nur die bisherigen Daten bekannt sind. Die Schätzungen des Modellparameters, für drei verschiedene Werte von m werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung dargestellt. Die Figur zeigt die gleitende durchschnittliche Schätzung des Mittelwertes zu jeder Zeit und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Aus der Figur ergibt sich sofort eine Schlussfolgerung. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend zurück, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, wenn der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und der durch den gleitenden Durchschnitt vorhergesagte Mittelwert. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Für ein abnehmendes Mittel ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Vorspannung, die in der Schätzung eingeführt werden, sind Funktionen von m. Je größer der Wert von m. Je größer die Größe der Verzögerung und der Vorspannung ist. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittels sind in den nachstehenden Gleichungen angegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, weil das Beispielmodell nicht kontinuierlich zunimmt, sondern es beginnt als Konstante, ändert sich zu einem Trend und wird dann wieder konstant. Auch die Beispielkurven sind vom Lärm betroffen. Die gleitende durchschnittliche Prognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Bias steigen proportional an. Die nachfolgenden Gleichungen zeigen die Verzögerung und die Vorspannung einer Prognoseperiode in die Zukunft im Vergleich zu den Modellparametern. Wiederum sind diese Formeln für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten uns über dieses Ergebnis nicht wundern. Der gleitende durchschnittliche Schätzer beruht auf der Annahme eines konstanten Mittels, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Untersuchungszeitraums. Da Echtzeit-Serien den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens die größte Wirkung für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widersprüchlichen Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu reduzieren und m zu reduzieren, um die Prognose besser auf Veränderungen zu reagieren Im gemein Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Ist die Zeitreihe wirklich ein konstanter Wert, so ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Begriff, der eine Funktion und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes, der mit einer Stichprobe von m Beobachtungen geschätzt wird, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Eine große m macht die Prognose nicht mehr auf eine Veränderung der zugrunde liegenden Zeitreihen. Um die Prognose auf Veränderungen zu reagieren, wollen wir m so klein wie möglich (1), aber das erhöht die Fehlerabweichung. Die praktische Vorhersage erfordert einen Zwischenwert. Vorhersage mit Excel Das Prognose-Add-In implementiert die gleitenden durchschnittlichen Formeln. Das folgende Beispiel zeigt die Analyse, die durch das Add-In für die Beispieldaten in Spalte B bereitgestellt wird. Die ersten 10 Beobachtungen sind indiziert -9 bis 0. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die MA (10) - Spalte (C) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall befindet sich in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Fore nach unten verschoben. Die Err (1) Spalte (E) zeigt den Unterschied zwischen Beobachtung und Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 gleich 6. Der prognostizierte Wert aus dem gleitenden Durchschnitt zum Zeitpunkt 0 beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und die mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet. Gewichtsbewegungsvorhersagemethoden: Vor - und Nachteile Hallo, LIEBE deine Post. Frage mich, ob du weiter rechnen könntest. Wir verwenden SAP. In ihm gibt es eine Auswahl, die du wählen kannst, bevor du deine Prognose namens Initialisierung ausführt. Wenn Sie diese Option überprüfen, erhalten Sie ein Prognoseergebnis, wenn Sie im selben Zeitraum die Prognose ausführen und die Initialisierung nicht bestätigen. Ich kann nicht herausfinden, was die Initialisierung macht. Ich meine, mathmatisch. Welches Prognoseergebnis ist am besten zu speichern und zu verwenden. Die Änderungen zwischen den beiden sind nicht in der prognostizierten Menge, sondern in der MAD und Error, Sicherheitsbestand und ROP-Mengen. Nicht sicher, ob Sie SAP verwenden. Hallo danke für die so genaue Weise zu gn. Danke Jaspreet Hinterlasse eine Antwort Antworten abbrechen Über Shmula Pete Abilla ist der Gründer von Shmula und der Charakter, Kanban Cody. Er hat Unternehmen wie Amazon, Zappos, eBay, Backcountry geholfen und andere reduzieren Kosten und verbessern die Kundenerfahrung. Er tut dies durch eine systematische Methode zur Erkennung von Schmerzpunkten, die den Kunden und das Geschäft beeinflussen, und ermutigt eine breite Beteiligung der Firmenpartner, ihre eigenen Prozesse zu verbessern. Diese Website ist eine Sammlung seiner Erfahrungen, die er mit Ihnen teilen möchte. Beginnen Sie mit kostenlosen Downloads
No comments:
Post a Comment