FORECASTING Saisonfaktor - der prozentuale Durchschnitt der durchschnittlichen vierteljährlichen Nachfrage, die in jedem Quartal auftritt. Jährliche Prognose für das Jahr 4 wird voraussichtlich 400 Einheiten sein. Durchschnittliche Prognose pro Quartal beträgt 4004 100 Einheiten. Quartalsvorhersage avg. Prognose saisonale faktor CAUSAL FORECASTING METHODEN Kausale Prognosemethoden basieren auf einer bekannten oder wahrgenommenen Beziehung zwischen dem zu prognostizierenden Faktor und anderen externen oder internen Faktoren 1. Regression: mathematische Gleichung bezieht sich auf eine abhängige Variable auf eine oder mehrere unabhängige Variablen, von denen angenommen wird, dass sie die abhängige Variable beeinflussen 2. ökonometrische Modelle: System von interdependenten Regressionsgleichungen, die einen gewissen Sektor der Wirtschaftstätigkeit beschreiben 3. Input-Output-Modelle: beschreibt die Ströme von einem Sektor der Wirtschaft zu einer anderen und prognostiziert also die Eingaben, die zur Erzeugung von Ausgängen in einem anderen Sektor erforderlich sind 4. Simulationsmodellierung MESSVORSCHLÄGE Es gibt zwei Aspekte von Prognosefehlern, die sich darum kümmern - Bias und Accuracy Bias - Eine Prognose ist voreingenommen, wenn sie mehr in eine Richtung als in der anderen irrt - die Methode tendiert zu Unterprognosen oder Überprognosen. Genauigkeit - Prognosegenauigkeit bezieht sich auf die Entfernung der Prognosen von der tatsächlichen Nachfrage ignorieren die Richtung dieses Fehlers. Beispiel: Für sechs Perioden Prognosen und tatsächliche Nachfrage wurden verfolgt Die folgende Tabelle gibt die tatsächliche Nachfrage D t und Prognose Nachfrage F t für sechs Perioden: kumulative Summe der Prognosefehler (CFE) -20 mittlere absolute Abweichung (MAD) 170 6 28,33 mittlere quadriert Fehler (MSE) 5150 6 858.33 Standardabweichung von Prognosefehlern 5150 6 29.30 mittlerer absoluter Prozentfehler (MAPE) 83.4 6 13.9 Welche Informationen geben jeweils eine Prognose, hat eine Tendenz zur Überschätzung der Nachfrage durchschnittlichen Fehler pro Prognose war 28,33 Einheiten oder 13,9 von Die tatsächliche Bedarfsabtastung der Prognosefehler hat eine Standardabweichung von 29,3 Einheiten. KRITERIEN ZUR AUSWAHL EINER FORECASTINGMETHODE Ziele: 1. Maximieren Sie die Genauigkeit und 2. Minimieren Sie Bias Potential Regeln für die Auswahl einer Zeitreihen-Prognosemethode. Wählen Sie die Methode aus, die die kleinste Vorspannung ergibt, wie sie durch den kumulativen Prognosefehler (CFE) gemessen wird oder gibt die kleinste mittlere absolute Abweichung (MAD) oder gibt das kleinste Tracking-Signal oder unterstützt die Management-Überzeugungen über das zugrunde liegende Muster der Nachfrage oder andere. Es scheint offensichtlich, dass ein gewisses Maß an Genauigkeit und Vorspannung zusammen verwendet werden sollte. Wie ist die Anzahl der zu sampelnden Perioden, wenn die Nachfrage inhärent stabil ist, werden niedrige Werte von und und höheren Werten von N vorgeschlagen, wenn die Nachfrage inhärent instabil ist, werden hohe Werte von und und niedrigeren Werten von N vorgeschlagen. FOCUS FORECASTING quotfocus Prognose bezieht sich auf Ein Ansatz für die Prognose, die Prognosen durch verschiedene Techniken entwickelt, dann wählt die Prognose, die von der quotbestquot dieser Techniken produziert wurde, wo quotbestquot durch ein Maß an Prognosefehler bestimmt wird. FOKUSVORSCHLAG: BEISPIEL Für die ersten sechs Monate des Jahres betrug die Nachfrage nach einem Einzelhandel 15, 14, 15, 17, 19 und 18 Einheiten. Ein Einzelhändler nutzt ein Fokus-Prognosesystem, das auf zwei Prognosetechniken basiert: ein zweistufiger gleitender Durchschnitt und ein richtungsgesteuertes exponentielles Glättungsmodell mit 0,1 und 0,1. Mit dem exponentiellen Modell betrug die Prognose für Januar 15 und der Trenddurchschnitt am Ende Dezember war 1. Der Einzelhändler nutzt die mittlere absolute Abweichung (MAD) für die letzten drei Monate als Kriterium für die Auswahl, welches Modell zur Prognose verwendet wird Für den nächsten Monat. ein. Was wird die Vorhersage für Juli sein und welches Modell wird verwendet werden b. Würden Sie auf Teil a antworten? Sei anders, wenn die Nachfrage nach Mai 14 statt 19Excel Sales Prognose für Dummies Cheat Sheet Wenn Sie beginnen, Prognose zu lernen, it8217s oft eine gute Idee, auf die Excel-Tools in der Data Analysis Add-In lehnen. Aber ihre Reichweite ist ziemlich begrenzt und vor zu lange you8217re wahrscheinlich zu finden, dass Sie Excel8217s Arbeitsblatt Funktionen direkt nutzen. Wenn Sie sich mit all den inferentiellen Statistiken, die zusammen mit der LINEST-Funktion kommen, finden Sie wissen, dass it8217s Zeit, um Ihre Grundlinie für eine formale Prognose zu legen. 6 Excel-Datenanalyse-Add-In-Tools Das Data Analysis-Add-In, das früher als Analysis ToolPak bekannt ist, gibt Formeln in Ihrem Namen ein, damit Sie sich auf Ihre Daten konzentrieren können. Es hat drei verschiedene Werkzeuge, die direkt nützlich sind bei der Vorhersage Moving Average, Exponential Glättung und Regression sowie mehrere andere, die helfen können. Heres eine Liste von einigen der Werkzeuge, die Teil des Data Analysis Add-In sind. Es gibt tatsächlich drei verschiedene ANOVA-Tools. Keiner ist speziell für die Prognose nützlich, aber jedes der Werkzeuge kann Ihnen helfen, den Datensatz zu verstehen, der Ihrer Prognose zugrunde liegt. Die ANOVA-Tools helfen Ihnen dabei, unter Proben zu unterscheiden, Menschen, die in Tennessee leben, wie eine bestimmte Marke von Auto besser als diejenigen, die in Vermont leben. Dieses Tool ist ein wichtiges, unabhängig von der Methode, die Sie verwenden, um eine Prognose zu erstellen. Wenn du mehr als eine Variable hast, kann es dir sagen, wie stark die beiden Variablen verwandt sind (plus oder minus 1,0 ist stark, 0.0 bedeutet keine Beziehung). Wenn Sie nur eine Variable haben, kann es Ihnen sagen, wie stark ein Zeitabschnitt mit einem anderen verwandt ist. Verwenden Sie das Programm "Beschreibende Statistik", um die Dinge wie den Durchschnitt und die Standardabweichung Ihrer Daten zu behandeln. Das Verständnis dieser grundlegenden Statistiken ist wichtig, so dass Sie wissen, was los ist mit Ihren Prognosen. Dieser Werkzeugname klingt unheilvoll und einschüchternd, was das Werkzeug nicht ist. Wenn Sie nur eine Variable etwas wie Umsatzerlöse oder Einzelverkäufe haben, schauen Sie auf einen vorherigen tatsächlichen Wert, um den nächsten vorherzusagen (vielleicht den vorherigen Monat oder den gleichen Monat im Vorjahr). All dieses Tool macht die nächste Prognose, indem sie den Fehler in der vorherigen Prognose anpasst. Ein gleitender Durchschnitt zeigt den Durchschnitt der Ergebnisse im Laufe der Zeit. Der erste könnte der Durchschnitt für Januar, Februar und März der zweite wäre dann der Durchschnitt für Februar, März und April und so weiter. Diese Methode der Prognose neigt dazu, sich auf das Signal zu konzentrieren (was in der Grundlinie wirklich vor sich geht) und das Rauschen zu minimieren (zufällige Schwankungen in der Grundlinie). Regression ist eng mit der Korrelation verknüpft. Verwenden Sie dieses Tool, um eine Variable (wie zB Verkäufe) von einem anderen (wie Datum oder Werbung) zu prognostizieren. Es gibt Ihnen ein paar Zahlen in einer Gleichung zu verwenden, wie Sales 50000 (10 Date). 4 Excel Forecasting-Funktionen Excel hat viele tolle Tools für die Verkaufsprognose. Die Kenntnis der folgenden Funktionen ist hilfreich, um Ihre Daten in Ordnung zu bringen. Überprüfen Sie die folgenden praktischen Vorhersagefunktionen. Die Arbeitsblattversion der Data Analysis Add-Ins Korrelationstool. Der Unterschied ist, dass CORREL neu berechnet, wenn sich die Eingabedaten ändern und das Korrelationstool nicht. Beispiel: CORREL (A1: A50, B1: B50). Auch CORREL gibt Ihnen nur eine Korrelation, aber das Korrelationstool kann Ihnen eine ganze Matrix von Korrelationen geben. Sie können diese Funktion anstelle des Datenanalyse-Add-Ins-Regressionstools verwenden. (Der Funktionsname ist eine Abkürzung für die lineare Schätzung.) Für eine einfache Regression wählen Sie einen Bereich von zwei Spalten und fünf Zeilen aus. Sie müssen diese Funktion eingeben. Geben Sie z. B. LINEST (A1: A50, B1: B50, TRUE) ein und drücken Sie dann CtrlShiftEnter. Diese Funktion ist praktisch, weil es Ihnen Prognosewerte direkt gibt, während LINEST Ihnen eine Gleichung gibt, die Sie verwenden müssen, um die Prognose zu erhalten. Verwenden Sie z. B. TREND (A1: A50, B1: B50, B51), wo Sie einen neuen Wert auf der Grundlage von was in B51 vorhersagen. Die Funktion FORECAST ähnelt der TREND-Funktion. Die Syntax ist ein wenig anders. Verwenden Sie zum Beispiel FORECAST (B51, A1: A50, B1: B50), wo Sie einen neuen Wert auf der Basis des Wertes in B51 prognostizieren. Auch FORECAST behandelt nur einen Prädiktor, aber TREND kann mehrere Prädiktoren behandeln. Was Sie aus dem Excel herausholen LINEST Funktion für Verkaufsprognose Excel8217s LINEST Funktion ist ein praktisches Werkzeug für Verkaufsprognose. Zu wissen, was Sie damit machen können, wird Ihre Vorhersage für eine einfache Arbeit sorgen. Hier ist ein kurzer Überblick auf Excel8217s LINEST-Funktion, Zeile für Zeile: Moving Average: Was es ist und wie man es berechnen Sehen Sie sich das Video an oder lesen Sie den Artikel unten: Ein gleitender Durchschnitt ist eine Technik, um eine Gesamtidee der Trends in einem zu bekommen Datensatz ist es ein Durchschnitt einer beliebigen Teilmenge von Zahlen. Der gleitende Durchschnitt ist äußerst nützlich für die Prognose langfristiger Trends. Sie können es für jeden Zeitraum berechnen. Zum Beispiel, wenn Sie Verkaufsdaten für einen Zeitraum von zwanzig Jahren haben, können Sie einen fünfjährigen gleitenden Durchschnitt, einen vierjährigen gleitenden Durchschnitt, einen dreijährigen gleitenden Durchschnitt und so weiter berechnen. Börsenanalysten werden oft einen 50 oder 200 Tag gleitenden Durchschnitt verwenden, um ihnen zu helfen, Trends in der Börse zu sehen und (hoffentlich) Prognose, wo die Aktien geleitet werden. Ein Durchschnitt repräsentiert den Wert 8220middling8221 eines Satzes von Zahlen. Der gleitende Durchschnitt ist genau der gleiche, aber der Durchschnitt wird mehrmals für mehrere Teilmengen von Daten berechnet. Wenn Sie zum Beispiel einen zweijährigen gleitenden Durchschnitt für einen Datensatz aus den Jahren 2000, 2001, 2002 und 2003 wünschen, finden Sie Mittelwerte für die Teilmengen 20002001, 20012002 und 20022003. Bewegungsdurchschnitte werden meist geplottet und am besten visualisiert. Berechnen eines 5-Jahres-Moving-Average-Beispiels Beispielproblem: Berechnen Sie einen fünfjährigen gleitenden Durchschnitt aus dem folgenden Datensatz: (4M 6M 5M 8M 9M) 5 6.4M Der durchschnittliche Umsatz für die zweite Teilmenge von fünf Jahren (2004 8211 2008). Zentriert um 2006, ist 6.6M: (6M 5M 8M 9M 5M) 5 6.6M Der durchschnittliche Umsatz für die dritte Teilmenge von fünf Jahren (2005 8211 2009). Zentriert um 2007, ist 6.6M: (5M 8M 9M 5M 4M) 5 6.2M Weiter berechnen jeden Fünf-Jahres-Durchschnitt, bis Sie das Ende des Satzes (2009-2013) erreichen. Dies gibt Ihnen eine Reihe von Punkten (Durchschnitte), die Sie verwenden können, um ein Diagramm der gleitenden Durchschnitte zu zeichnen. Die folgende Excel-Tabelle zeigt Ihnen die gleitenden Durchschnitte, die für 2003-2012 berechnet wurden, zusammen mit einem Scatter-Diagramm der Daten: Sehen Sie sich das Video an oder lesen Sie die folgenden Schritte: Excel hat ein leistungsfähiges Add-In, das Data Analysis Toolpak (wie man die Daten lädt Analysis Toolpak), die Ihnen viele zusätzliche Optionen bietet, darunter eine automatisierte gleitende durchschnittliche Funktion. Die Funktion berechnet nicht nur den gleitenden Durchschnitt für Sie, sondern gleitet auch die Originaldaten zur gleichen Zeit. Sie sparen eine Menge Tastenanschläge. Excel 2013: Schritte Schritt 1: Klicken Sie auf die Registerkarte 8220Data8221 und klicken Sie dann auf 8220Data Analysis.8221 Schritt 2: Klicken Sie auf 8220Moving average8221 und klicken Sie dann auf 8220OK.8221 Schritt 3: Klicken Sie auf das Feld 8220Input Range8221 und wählen Sie dann Ihre Daten aus. Wenn Sie Spaltenüberschriften einfügen, stellen Sie sicher, dass Sie die Etiketten im ersten Zeilenfeld überprüfen. Schritt 4: Geben Sie ein Intervall in die Box ein. Ein Intervall ist, wie viele vorherige Punkte Sie Excel verwenden möchten, um den gleitenden Durchschnitt zu berechnen. Zum Beispiel würde 822058221 die vorherigen 5 Datenpunkte verwenden, um den Durchschnitt für jeden nachfolgenden Punkt zu berechnen. Je niedriger das Intervall, desto näher ist Ihr gleitender Durchschnitt zu Ihrem ursprünglichen Datensatz. Schritt 5: Klicken Sie in das Feld 8220Output Range8221 und wählen Sie einen Bereich auf dem Arbeitsblatt aus, in dem das Ergebnis angezeigt werden soll. Oder klicken Sie auf das Optionsfeld 8220New workheet8221. Schritt 6: Überprüfen Sie das Kontrollkästchen 8220Chart Output8221, wenn Sie ein Diagramm Ihres Datensatzes sehen möchten (falls Sie dies vergessen, können Sie jederzeit wieder hinfahren und hinzufügen oder ein Diagramm aus der Registerkarte 8220Insert8221 auswählen.8221 Schritt 7: Drücken Sie 8220OK .8221 Excel gibt die Ergebnisse in dem Bereich zurück, den Sie in Schritt 6 angegeben haben. Sehen Sie sich das Video an oder lesen Sie die folgenden Schritte aus: Beispielproblem: Berechnen Sie den dreijährigen gleitenden Durchschnitt in Excel für die folgenden Verkaufsdaten: 2003 (33M), 2004 (22M), 2005 (36M), 2006 (34M), 2007 (43M), 2007 (43M), 2009 (43M), 2010 (43M), 2012 (43M), 2013 (64M), 2013 (64M), 2013 (64M) 1: Geben Sie Ihre Daten in zwei Spalten in Excel ein. Die erste Spalte sollte das Jahr und die zweite Spalte die quantitativen Daten haben (in diesem Beispiel Problem, die Verkaufszahlen). Stellen Sie sicher, dass es keine leeren Zeilen in Ihren Zelldaten gibt : Berechnen Sie den ersten Dreijahresdurchschnitt (2003-2005) für die Daten. Für dieses Beispielproblem geben Sie 8220 (B2B3B4) 38221 in Zelle D3 ein. Berechnen des ersten Mittels Schritt 3: Ziehen Sie das Quadrat in der unteren rechten Ecke nach unten Verschieben Sie die Formel auf alle Zellen in der Spalte. Dies berechnet Mittelwerte für aufeinanderfolgende Jahre (z. B. 2004-2006, 2005-2007). Ziehen der Formel. Schritt 4: (Optional) Erstellen Sie einen Graphen. Wählen Sie alle Daten im Arbeitsblatt aus. Klicken Sie auf die Registerkarte 8220Insert8221, dann klicken Sie auf 8220Scatter, 8221 und klicken Sie dann auf 8220Scatter mit glatten Linien und Markierungen.8221 Ein Graphen Ihres gleitenden Durchschnitts wird auf dem Arbeitsblatt angezeigt. Überprüfen Sie unseren YouTube-Kanal für mehr Stats Hilfe und Tipps Moving Average: Was es ist und wie es zu berechnen ist zuletzt geändert: 8. Januar 2016 von Andale 22 Gedanken auf ldquo Moving Average: Was es ist und wie man es berechnet rdquo Dies ist Perfekt und einfach zu assimilieren. Danke für die Arbeit Das ist sehr klar und informativ. Frage: Wie rechnet man einen 4-jährigen gleitenden Durchschnitt. In welchem Jahr würde das 4-jährige gleitende Mittelpunkt auf dem Ende des zweiten Jahres (d. H. 31. Dezember) liegen. Kann ich das mittlere Einkommen verwenden, um zukünftige Erträge zu prognostizieren, weiß jemand über zentrierte Mittel, bitte sagen Sie mir, wenn jemand es weiß. Hier ist es, dass wir 5 Jahre dauern müssen, um das Mittel zu bekommen, das im Zentrum ist. Dann was ist mit den restlichen Jahren, wenn wir den Mittelwert von 20118230 haben wollen, haben wir nach 2012 noch weitere Werte, wie würden wir es dann berechnen Don8217t haben noch mehr info es wäre unmöglich, die 5-jährige MA für 2011 zu berechnen. Sie konnten einen zweijährigen gleitenden Durchschnitt aber erhalten. Hallo, Vielen Dank für das Video. Eines ist jedoch unklar. Wie man eine Prognose für die kommenden Monate macht Das Video zeigt die Prognose für die Monate, für die Daten bereits vorhanden sind. Hallo, Raw, I8217m arbeiten an der Erweiterung des Artikels um die Prognose. Der Prozess ist ein wenig komplizierter als die Verwendung von vergangenen Daten though. Werfen Sie einen Blick auf diese Duke University Artikel, die es in der Tiefe erklärt. Grüße, Stephanie danke für eine klare Erklärung. Hallo Nicht in der Lage, den Link zu den vorgeschlagenen Duke University Artikel zu finden. Bitte um den Link erneut zu veröffentlichen
No comments:
Post a Comment