Sunday, 8 October 2017

Moving Average Template Excel


Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Wie berechnen Bewegungsdurchschnitte in Excel Excel Datenanalyse für Dummies, 2. Auflage Der Datenanalyse-Befehl bietet ein Werkzeug für die Berechnung von beweglichen und exponentiell geglätteten Mittelwerten in Excel. Angenommen, aus Gründen der Veranschaulichung, dass Sie die tägliche Temperaturinformation gesammelt haben. Sie wollen den dreitägigen gleitenden Durchschnitt berechnen 8212 der Durchschnitt der letzten drei Tage 8212 als Teil einer einfachen Wettervorhersage. Um die gleitenden Durchschnitte für diesen Datensatz zu berechnen, gehen Sie wie folgt vor: Um einen gleitenden Durchschnitt zu berechnen, klicken Sie zuerst auf die Schaltfläche Daten tab8217s Datenanalyse. Wenn Excel das Dialogfeld Datenanalyse anzeigt, wählen Sie aus der Liste die Option Durchschnitt verschieben aus, und klicken Sie dann auf OK. Excel zeigt das Dialogfeld Moving Average an. Identifizieren Sie die Daten, die Sie verwenden möchten, um den gleitenden Durchschnitt zu berechnen. Klicken Sie in das Eingabefeld Eingabebereich des Dialogfelds "Verschieben von Mittel". Dann identifizieren Sie den Eingabebereich, indem Sie entweder eine Arbeitsblattbereichsadresse eingeben oder mit der Maus den Arbeitsblattbereich auswählen. Ihr Bereichsreferenz sollte absolute Zellenadressen verwenden. Eine absolute Zellenadresse geht dem Spaltenbrief und der Zeilennummer mit Zeichen vor, wie bei A1: A10. Wenn die erste Zelle in Ihrem Eingabebereich eine Textbeschriftung enthält, um Ihre Daten zu identifizieren oder zu beschreiben, markieren Sie das Kontrollkästchen Etiketten in der ersten Zeile. Vergewissern Sie sich im Textfeld Intervall, wie viele Werte in die gleitende Durchschnittsberechnung einbezogen werden sollen. Sie können einen gleitenden Durchschnitt mit einer beliebigen Anzahl von Werten berechnen. Standardmäßig verwendet Excel die letzten drei Werte, um den gleitenden Durchschnitt zu berechnen. Um festzulegen, dass eine andere Anzahl von Werten verwendet wird, um den gleitenden Durchschnitt zu berechnen, geben Sie diesen Wert in das Intervall-Textfeld ein. Sagen Sie Excel, wo die gleitenden Durchschnittsdaten platziert werden sollen. Verwenden Sie das Textfeld Ausgabebereich, um den Arbeitsbereich zu identifizieren, in den Sie die gleitenden Durchschnittsdaten platzieren möchten. Im Beispiel des Arbeitsblatts wurden die gleitenden Durchschnittsdaten in den Arbeitsblattbereich B2: B10 eingefügt. (Optional) Geben Sie an, ob ein Diagramm angezeigt werden soll. Wenn Sie ein Diagramm wünschen, das die gleitenden durchschnittlichen Informationen aufgibt, markieren Sie das Kontrollkästchen Diagrammausgabe. (Optional) Geben Sie an, ob Standardfehlerinformationen berechnet werden sollen. Wenn Sie Standardfehler für die Daten berechnen möchten, markieren Sie das Kontrollkästchen Standardfehler. Excel setzt Standardfehlerwerte neben den gleitenden Mittelwerten. (Die Standardfehlerinformation geht in C2: C10.) Nachdem Sie die Angabe festgelegt haben, welche gleitenden durchschnittlichen Informationen Sie berechnen möchten und wo Sie es platzieren möchten, klicken Sie auf OK. Excel berechnet gleitende durchschnittliche Informationen. Hinweis: Wenn Excel nicht genügend Informationen hat, um einen gleitenden Durchschnitt für einen Standardfehler zu berechnen, legt er die Fehlermeldung in die Zelle. Sie können mehrere Zellen sehen, die diese Fehlermeldung als Wert anzeigen. Moving Average Die Moving Average Technical Indicator zeigt den durchschnittlichen Instrument Preis Wert für einen bestimmten Zeitraum. Wenn man den gleitenden Durchschnitt berechnet, schätzt man den Instrumentenpreis für diesen Zeitraum. Wenn sich der Preis ändert, steigt der gleitende Durchschnitt entweder an oder sinkt. Es gibt vier verschiedene Arten von gleitenden Durchschnitten: Einfach (auch als Arithmetik bezeichnet), Exponential. Geglättet und gewichtet. Moving Average kann für jeden sequentiellen Datensatz berechnet werden, einschließlich der Öffnungs - und Schlusskurse, der höchsten und niedrigsten Preise, des Handelsvolumens oder anderer Indikatoren. Es ist oft der Fall, wenn doppelte gleitende Mittelwerte verwendet werden. Das Einzige, wo sich gleitende Mittelwerte verschiedener Typen erheblich voneinander unterscheiden, ist, wenn Gewichtskoeffizienten, die den letzten Daten zugeordnet sind, unterschiedlich sind. Falls wir von Simple Moving Average sprechen. Alle Preise des jeweiligen Zeitraums sind gleichwertig. Exponentieller Moving Average und Linear Weighted Moving Average legen mehr Wert auf die neuesten Preise. Die gängigste Art, den Preis gleitenden Durchschnitt zu interpretieren, ist, ihre Dynamik mit der Preisaktion zu vergleichen. Wenn der Instrumentenpreis über seinem gleitenden Durchschnitt steigt, erscheint ein Kaufsignal, wenn der Preis unter seinen gleitenden Durchschnitt fällt, was wir haben, ist ein Verkaufssignal. Dieses Handelssystem, das auf dem gleitenden Durchschnitt basiert, ist nicht dafür ausgelegt, in den tiefsten Punkt des Marktes zu gelangen und seinen Ausgang direkt auf den Gipfel zu bringen. Es erlaubt, nach dem folgenden Trend zu handeln: bald zu kaufen, nachdem die Preise den Boden erreicht haben, und bald zu verkaufen, nachdem die Preise ihren Höhepunkt erreicht haben. Bewegliche Mittelwerte können auch auf Indikatoren angewendet werden. Das ist, wo die Interpretation der Indikatorbewegungsdurchschnitte ähnlich der Interpretation der Preisbewegungsdurchschnitte ist: Wenn der Indikator über seinem gleitenden Durchschnitt steigt, bedeutet dies, dass die aufsteigende Indikatorbewegung wahrscheinlich weitergehen wird: Wenn der Indikator unter seinen gleitenden Durchschnitt fällt, ist dies der Fall Bedeutet, dass es wahrscheinlich weiter nach unten geht. Hier sind die Arten der sich bewegenden Mittelwerte auf dem Diagramm: Simple Moving Average (SMA) Exponentieller Moving Average (EMA) Geglättete Moving Average (SMMA) Linear Weighted Moving Average (LWMA) Sie können die Handelssignale dieses Indikators testen, indem Sie einen Expertenberater erstellen In MQL5 Zauberer. Berechnung Einfacher Bewegungsdurchschnitt (SMA) Einfache, mit anderen Worten, der arithmetische gleitende Durchschnitt wird berechnet, indem man die Preise der Instrumentenschließung über eine bestimmte Anzahl von Einzelperioden (z. B. 12 Stunden) zusammenfasst. Dieser Wert wird dann durch die Anzahl solcher Perioden dividiert. SMA SUM (SCHLIESSEN (i), N) N SUM Summe SCHLIESSEN (i) aktuelle Periode Schliesspreis N Anzahl der Berechnungsperioden. Exponentieller Moving Average (EMA) Exponentiell geglätteter gleitender Durchschnitt wird durch Addition eines bestimmten Anteils des aktuellen Schlusskurses auf den vorherigen Wert des gleitenden Durchschnitts berechnet. Mit exponentiell geglätteten gleitenden Durchschnitten sind die letzten engen Preise von mehr Wert. P-Prozent exponentieller gleitender Durchschnitt sieht aus wie: EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) SCHLIESSEN (i) aktueller Periodenabschlusspreis EMA (i - 1) Wert des Moving Average Der vorherigen Periode P der Prozentsatz der Verwendung des Preiswertes. (SMA) Der erste Wert dieses geglätteten gleitenden Durchschnitts wird als der einfache gleitende Durchschnitt (SMA) berechnet: SUM1 SUM (CLOSE (i), N) Der zweite gleitende Durchschnitt wird nach dieser Formel berechnet: SMMA (i) (I - 1) N SMMA (i) (PREVSUM - SMMA (i - 1) SCHLIESSEN (i)) NV - N SUM Summe SUM1 Gesamtsumme der Schlusskurse für N Perioden wird von der vorherigen Bar gezählt PREVSUM geglättete Summe der vorherigen Bar SMMA (i-1) geglätteten gleitenden Durchschnitt der vorherigen Bar SMMA (i) geglätteten gleitenden Durchschnitt der aktuellen Bar (Mit Ausnahme des ersten) SCHLIESSEN (i) aktueller enger Preis N Glättungszeitraum Nach arithmetischen Umwandlungen kann die Formel vereinfacht werden: SMMA (i) (SMMA (i - 1) (N - 1) CLOSE (i)) N Linear Weighted Moving Average (LWMA) Bei gewichtetem gleitendem Durchschnitt sind die letzten Daten Von mehr Wert als frühere Daten. Der gewichtete gleitende Durchschnitt wird durch Multiplikation jedes der Schlusskurse innerhalb der betrachteten Serie mit einem gewissen Gewichtungskoeffizienten berechnet: LWMA SUM (SCHLIESSEN (i) i, N) SUM (i, N) SUM Summe SCHLIESSEN (i) aktueller Schlusskurs SUM (i, N) Gesamtsumme der Gewichtskoeffizienten N Glättungsperiode

No comments:

Post a Comment